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Abstract. We review the state of the art in flow instabilities in displacement pro- 
cesses in porous media. Both miscible and immiscible displacements are considered. 
Effects of mobility ratio, capillary and Pedet numbers are explored. We juxtapose 
continuum and discrete methods and discuss results and limitations. Emphasis is 
placed on heterogeneity and its interplay with flow instabilities. 

1. Introduction 

Flow instabilities in porous media are associated with displacement driven by pressure 
gradients, where there is (or develops) a spatial contrast in the fluid mobilities, with the 
mobility decreasing in the flow direction. While there exist certain similarities with the 
well-studied Saffman-Taylor problem [l, 21 (and perhaps even more with the imperfect 
Hele-Shaw cell [3]), displacements in porous media are also very different. This is due 
to  the heterogeneity a t  various scales, which is characteristic of porous media and 
decisively affects flow patterns [4]. Instabilities in porous media are commonly viewed 
a t  scales larger than the pore scale, under the hypothesis that  distinct, stable interfaces 
can be defined within a pore and that the flow is Darcy rather than Stokes. This is 
taken to  be true even in the absence of interfacial tension, for instance for DLA-type 
processes [5, 61. It is, therefore, important to  point out that shear instabilities of the 
type discussed in [7, 81 are not considered. 

Scale separation, although at  a different level, is likewise assumed in the classical 
treatment of flow instabilities. Here, continuum models relate macroscopic variables in 
terms of (local) PDEs under the hypothesis that  a t  the pore (or network of pores) scale, 
concentration or saturation profiles are ‘flat’. For primary drainage, appropriate limits 
on the capillary number (Ca) can be placed [5]. Analogous results for imbibition or for 
miscible displacement , however, are not known. This continuum approach allows one 
to  consider instabilities as a frontal displacement problem, much like flame propagation 
[9]. In fact, such frontal instability has been the original definition of viscous fingering 
[lo]. When macroscopic models lose validity (e.g. a t  larger values of C a )  a non-local, 
pore level formulation becomes necessary. Several attempts in this direction have 
recently been made for immiscible displacement [ll-151. 

Flow instability in porous media is thus intricately related to a few significant 
variables: the externally imposed ratio in the far-field viscosities and the flow velocity 
(‘non-equilibrium constraint’ [IS]) and the porous media properties, wettability and 
pore structure a t  various scales. Additionally, large-scale effects, such as gravity, 
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the flow geometry, the history of the displacement process and long-range property 
correlations are of importance. In the following we summarize some of the results 
obtained on these issues for immiscible and miscible displacements. 

2. Continuum models 

2.1. Immiscible displacement 

Continuum approaches rely on quasi-static hypotheses assuming capillary control a t  
the pore scale. An adequate description of primary drainage only is currently avail- 
able, imbibition being sensitive to additional effects [17-191. Continuum approaches 
are applied in a phenomenological way [20]: a travelling-wave base state, uniform in 
the direction, y ,  transverse to the main flow is assumed, which satisfies a parabolic, 
non-linear PDE. The equation is hypodiffusive for primary drainage (percolation-like) , 
it is a regular diffusion in the case of mobile initial saturations, and it is assumed 
hyperdiffusive for imbibition. The upstream decay can be exponential or algebraic 
[all. These aspects are important for a macroscopically homogeneous medium with 
small uncorrelat,ed fluctuations, although their effect becomes secondary for strong 
heterogeneity. 

The random microstructure in the above is represented in terms of percolation- 
dependent properties, which give rise to a transition zone of macroscopic width, scaling 
with the macroscopic length &/Ca, where k denotes permeability. The validity of the 
macroscopic predictions is thus limited to large wavelengths, or to  weak instabilities. 
A standard analysis in terms of normal modes (ewt+iay) yields [21]: 

The leading term w1 is due to the contrast in far-field mobility and generalizes the 
Saffman-Taylor result, predicting large-wavelength instability for M A(  l ) / X ( O )  > 
1.  The appearance of mobility terms X - k / p  in (1) anticipates the importance of 
permeability heterogeneity. Stabilization occurs a t  shorter scales due to  capillarity 
and to the existence of a transition zone, both of which contribute a second-order 
effect, w2 < 0 [22]. The short>-wavelength limit ( a  >> 1) can be shown to be stable, in 
general. However, rigorous results do not exist for the most interesting percolation-like 
case (hypodiffusive base states). 

Other important macroscopic effects include gravity, which leads to  a critical flow 
velocity [23] and flow geometry. Generalizing [24] for radial flow, where algebraic 
(Yeine)  rather than exponential rates apply, immiscible displacement is predicted more 
stable than in rectilinear flow [as]. A simple transformation links the two geometries 
a t  relatively large C a ,  2(u + l)/Ca = U ,  n/Ca = a .  This suggests the existence of a 
critical capillary number, C a * ( M ,  . . .), below which the displacement is stable, for all 
wavelengths, despite M > 1. 

A weakly non-linear analysis near the onset of instability predicts non-linear stabi- 
lization [26]. In an unpublished study, we have also considered the weakly non-linear 
extension of (1) a t  small mobility contrast, X(1) = X(0) + E .  In rescaled variables, the 
amplitude equation satisfies 

A, + aA$ + ( y  ) H { A y }  = (-w2)Ayy 
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where H is the Hilbert transform. The above is also obtained in the stability of 
flame fronts [27]. We have found that it predicts stabilization a t  wavelengths larger 
(in certain instances twice as large) than the fastest growing wavelength of the linear 
theory. This hints to  finger merging (or pairing), as observed by Homsy [28] in miscible 
displacements. 

Additional features of unstable, immiscible displacement by a continuum formalism 
have been described in [14]. The asymptotic state of unstable macroscopic fronts 
(large-scale fingers, tip splitting, etc) is largely unexplored, in the general presumption 
that  features similar to Hele-Shaw flows would emerge. However, a thin-front analysis 
of the continuum equations in the spirit of [29] shows that the interface conditions are 
qualitatively different. We hope to  report on this issue in the future. 

2.2. Miscible displacement 

While immiscible displacement is subject to  the intricacies of wettability, miscible 
displacement is, by contrast, easier to  describe. This is indeed the case for the dis- 
persion of a passive solute (e.g. see [30,31]). Surprisingly little is known, however, for 
the non-linear case, where the fluid viscosity varies with concentration. Contrary to  
immiscible flows, rigorous pore level results do not exist. Present continuum formula- 
tions are therefore only extensions of the passive solute formalism, e.g. with dispersion 
tensors corresponding to  passive solute [15,32,33]. 

With dispersion neglected, continuum models predict a long-wavelength instability 
identical to  (l), and a short-wavelength growth at  a finite rate w = max[dlnp/d[] 
[23]. By including dispersion and considering sharp, step-like, base states, Tan and 
Homsy [32] obtained the stabilization cut-off, a,  = In M / 2 ( ~ + f i )  where lengths scale 
with the dispersivity. The stabilization due to  transverse dispersion ( E  = D1/DI1) is 
evident. However, one should note the generally small lengths (of the order of pore 
diameter), below which instability is suppressed. While this is indeed an indicator of 
the relevance of viscous instabilities in miscible flows (as compared to  immiscible, a t  
least for low C a ) ,  the result is also very near the border where continuum models lose 
validity. 

Such possible inadequacies are apparent in [33], where the effects of mechanical 
dispersion on flow instability were also included. Denoting this effect by L = allq/DIl, 
i t  was shown that for step-like base states the stabilizing cut-off depends on the combi- 
nation 7 = ( L  In M/2) t a n h ( l  In M/2) - 1 - &. When 7 < 0,  which is always satisfied 
if L = 0 (as above) or if the flow rate or the viscosity ratio are small, the cut-off is 
finite, a, - ( lnM)c ' /2 / ( -27 ) .  While, when 7 > 0, a finite cut-off is not predicted 
despite the presence of dispersion. The transition requires sufficiently high (but finite) 
values in the viscosity contrast M,  as long as L # 0. A relevant physical interpretation 
is currently lacking, and it is possible that this result merely reflects the breakdown 
of the continuum description under the conditions assumed. In either case, i t  calls for 
an improved, non-local description. 

I t  must be borne in mind that in real media, permeability fluctuations and 
macrodispersion are likely to  predominate over pore scale dispersion and to  blanket 
such finer effects. Even under these conditions, however, the effect of viscous insta- 
bilities t o  the macrodispersion needs to  be investigated. Recent non-local theories for 
passive solute dispersion [34,35] appear promising in this direction. Nevertheless, it 
must be also pointed out that  simulation of the conventional convection-dispersion 
equations is very common [36-381. Results obtained bear many similarities with Hele- 
Shaw displacements (mechanisms of merging and pairing [28] along with shielding, 
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splitting, spreading and stretching [2,36]). Effects of permeability heterogeneity are 
investigated in [37], where the importance of early events was emphasized. 

3. Discrete models 

We consider, next, the application of discrete methods, which are best suited for 
unstable displacement a t  strong instability. Typical examples are recent 2D simulations 
without interfacial tension or dispersion, the cut-offs being the pore size [12] or the 
simulation spacing [ll, 14,151. Simulations are performed a t  a variable mobility ratio. 
The limit M = CO corresponds to DLA, the displacing fluid being a fractal cluster. 
Upon a decrease of M ,  on the other hand, the displacement pattern consists of a 
compact core preceded by a fractal interface of dimension varying with M .  However, 
the latter was found to  depend on the grid size. 

The significance of this sensitivity was recently analyzed by two different ap- 
proaches [6,15]. Lee e t  a1 [6] studied the real space renormalization group of a 2D 
displacement and arrived at  the important result that  there exist two fixed points 
only: the Eden point, corresponding to  a compact, Euclidean cluster, e.g. as with 
M = 1, which is stable; and the DLA point, corresponding to  a fractal cluster, e.g. 
as with M = 00, which is a saddle point. The conclusion was, therefore, reached 
that 2D patterns with finite M eventually (sufficiently long times, large length scales 
or fine enough grids) approach a Euclidean limit (to be understood in the sense of 
a compact cluster perhaps with a fractal surface). This is valid even in the absence 
of intrinsic stabilization, such as interfacial tension. Furthermore, they proposed a 
cross-over scaling law 

m(R) = R d F  ( $ R 4 )  (3) 

with d + a4 = 2 and 4 2: 0.5 in 2D. Here R is the radius of gyration in units of 
lattice spacing, m being the ‘mass’ of the cluster. Qualitatively similar conclusions 
were reached by King and Scher [15] in their numerical study. It follows that unstable 
displacements characterized by transient, non-local, fractal regimes eventually acquire 
a compact core due to  the finite value of M ,  which allows for the ‘base’ near injection to  
be filled [15]. Qualitatively, the early transient can be likened to  anomalous dispersion 
[34,35,39,40]. While the attraction to  a Euclidean limit raises hopes for more rigorous 
continuum formalisms. 

The above have consequences in a t  least two other directions. One is the scale 
up of numerical or laboratory experiments of highly unstable displacements, which 
ought to  be done with the caution suggested by (3). The other consequence is that  
heterogeneities of a scale of the order of the cross-over or larger are likely to dominate. 
Of course, the relevance of large-scale heterogeneities in permeability has been known 
for a long time by reservoir engineers (see also [41]). 

The previous dealt with random porous media, where fluctuations are not cor- 
related and distributions are narrow. Correlated media and wide distributions are 
expected to  significantly influence the displacement. That  this is true can be inferred 
from the anomalous dispersion of a passive solute ( M  = 1) in media correlated a t  all 
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scales [35,41,42], and from the model of Katz and Thompson [43] for a wide conduc- 
tance distribution, where flow occurs over a percolation cluster. Finite correlations in 
percolation are expected t o  only augment finite-size effects. One anticipates the re- 
gion of capillary control t o  diminish. In viscous-controlled displacements, the author is 
aware of two studies [43,44] where unstable displacement in a correlated permeability 
field is studied. Furthermore, the use of fractal geostatistics (correlations a t  all scales) 
is routinely practiced in modern field-scale simulations [45]. 

4. Conclusions 

In the limited space of this paper, we attempted to  highlight some of the issues re- 
lated to  flow instabilities in porous media. We have discussed cont,inuum and discrete 
approaches, and outlined possible limitations and open problems. For random me- 
dia, unresolved is the understanding of the imbibition process a t  various scales, as 
well as the process of dispersion in unstable flow at low rates (Peclet numbers) and 
small lengths. For viscous-controlled problems, the recent results of [G, 151 suggest 
that  unstable displacements are asymptotically attracted to  non-fractal regimes. A 
quantitative description of this transition would be of great interest. The develop- 
ment of rigorous continuum models and the examination of large scale effects, such as 
finger interaction are also needed. Finally, extension of the previous results to  3D is 
necessary. 

For media with correlated fluctuations or wide distributions in properties, fun- 
damental studies similar to  [GI are needed. As in passive solute dispersion, finite 
correlation lengths would augment the size of the region (longer time or length scales) 
where non-local effects are important. The extension to  infinitely long correlations is 
non-trivial and of great interest. In the context of geologic, porous media, anisotropy 
also becomes important. These systems are of practical significance (layered porous 
media). Empirical models for unstable flow [4G] have been developed and routinely 
used. However, their validation awaits further theoretical developments. 
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